イータ関数の導関数がでてきます
イータ関数の導関数がでてきます
次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx=? \]
次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx=? \]
\begin{align*}
\int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx & =\int_{0}^{\infty}\frac{e^{-x}\log x}{1+e^{-x}}dx\\
& =\int_{0}^{\infty}e^{-x}\log x\sum_{k=0}^{\infty}\left(-e^{-x}\right)^{k}dx\\
& =\sum_{k=0}^{\infty}\left(-1\right)^{k}\int_{0}^{\infty}e^{-\left(k+1\right)x}\log xdx\\
& =\sum_{k=0}^{\infty}\left(-1\right)^{k}\mathcal{L}_{x}\left[H\left(x\right)\log x\right]\left(k+1\right)\\
& =\sum_{k=0}^{\infty}\left(-1\right)^{k}\frac{-1}{k+1}\left(\log\left(k+1\right)+\gamma\right)\\
& =-\gamma\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}}{k+1}-\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\log\left(k+1\right)}{k+1}\\
& =-\gamma\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{k}-\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}\log k}{k}\\
& =-\gamma\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{k}-\left[\frac{d}{dt}\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}k^{t}}{k}\right]_{t=0}\\
& =-\gamma\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{k}-\left[\frac{d}{dt}\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{k^{1-t}}\right]_{t=0}\\
& =-\gamma\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{k}-\left[\frac{d}{dt}\eta\left(1-t\right)\right]_{t=0}\\
& =-\gamma\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{k}+\eta'\left(1\right)\\
& =-\gamma\log2+\left(-\frac{1}{2}\log^{2}2+\gamma\log2\right)\cmt{\because\eta'\left(1\right)=-\frac{1}{2}\log^{2}2+\gamma\log2}\\
& =-\frac{1}{2}\log^{2}2
\end{align*}
ページ情報
タイトル | イータ関数の導関数がでてきます |
URL | https://www.nomuramath.com/zsh2731j/ |
SNSボタン |
分母に(1+x²)²を含む積分
\[
\int\frac{1}{\left(1+x^{2}\right)^{2}}dx=\frac{1}{2}\tan^{\bullet}x+\frac{x}{2\left(1+x^{2}\right)}+C
\]
対数のルート積分
\[
\int\log^{\frac{1}{2}}xdx=x\log^{\frac{1}{2}}x-\frac{\sqrt{\pi}}{2}erfi\left(\log^{\frac{1}{2}}x\right)+C
\]
床関数の総和の2乗の定積分
\[
\int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}x\right\rfloor }{3^{k}}\right)^{2}dx=?
\]
分母に1乗と2乗ルートの積分
\[
\int\frac{1}{\left(z\pm1\right)\sqrt{z^{2}-1}}dz=\frac{\sqrt{z^{2}-1}}{\pm z+1}+C
\]